Table of Contents

1. Objective .. 3
2. Scope .. 3
3. Overview of the Tyre Industry ... 3
4. Environmental Issues Associated with Used Tyres ... 6
 4.1. Public Health Risk ... 6
 4.2. Environmental Risk ... 6
 4.2.1. Ecotoxicity and Leaching .. 6
 4.2.2. Uncontrolled Open Air Burning .. 7
5. The Basel Convention and Used Tyres ... 8
6. Mitigation Measures .. 8
 6.1. Environmentally-Sound Management .. 8
 Waste Prevention and Minimization ... 9
 Storage of Tyres ... 9
 6.2. Reuse ... 10
 6.3. Disposal .. 11
7. EPA Authorisation Process .. 16
8. Reference ... 18

Environmental Guidelines for the Management of Used Tyres

1. Objective

These guidelines were prepared to provide information on environmentally-sound techniques for the management of used tyres. They are intended for generators of used tyres and the general public at large.

2. Scope

These guidelines were adopted from the Basel Convention Technical Guidelines for the Environmentally Sound Management of used and waste pneumatic tyres (air is held under pressure inside the tyre). It provides an overview of the tyre industry while identifying the human and environmental issues that may arise from improper management of used tyres. Further, it highlights the role of the Basel Convention in the management and export of wastes.

3. Overview of the Tyre Industry

A tyre is a strong flexible rubber casing attached to a rim of a wheel. Tyres are mostly pneumatic, i.e. air is held under pressure inside the tyre.

The manufacturing process for tyres is complex and labour intensive resulting in direct employment for many persons. Although rubber is the main material in tyre production, the process involves other materials such as fibres, textile, and steel. In order to achieve specific characteristics, the rubber is usually treated with a variety of chemicals and then heated.

There are currently 450 tyre factories in the world. Over one billion tyres are manufactured annually worldwide. Passenger car and truck tyres represent 85% of the total number of tyres manufactured.

The purpose of tyres is to transmit the force necessary for propulsion (driving). Tyres are designed to dampen the unevenness of the road surface.
Environmental Guidelines for the Management of Used Tyres

The Environment is Everybody’s Business

Fig1: Cross section of a tyre.

- **Tread** means the part of a pneumatic-tyre that is designed to come into contact with the ground.
- **Sidewall** means the part of a pneumatic-tyre between the tread and the area designed to be covered by the rim flange.
- **Ply** means a layer of "rubber" coated parallel cords. In the radial tyre, it has the purpose of stabilizing the tyre.
- **Chafer** means material in the bead area to protect the carcass against chafing or abrasion by the wheel rim.
- **Bead** means the part of a pneumatic tyre that is of such shape and structure as to fit the rim and hold the tyre onto it.
- **Belt** applies to a radial ply or bias belted tyre and means a layer or layers of material or materials underneath the tread, laid substantially in the direction of the centre line of the tread to restrict the carcass in a circumferential direction.

It is estimated that 80% of car tyres and 75% of truck tyres are made of rubber compounds. Below, Table 1 gives the component types and percentage of materials used to make different of tyres while Table 2 identifies the materials used to make tyres, their sources and application in the manufacture of tyres.

<table>
<thead>
<tr>
<th>Material</th>
<th>Automobile (%)</th>
<th>Trucks (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber/Elastomers</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>Carbon black and silica</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Metal</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>Textile</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Zinc oxide</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 1: Main components of car and truck tyres.

<table>
<thead>
<tr>
<th>Material</th>
<th>Source</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Rubber</td>
<td>Natural rubber is predominantly obtained from the sap of the Hevea brasiliensis tree (rubber Tree).</td>
<td>Natural rubber currently accounts for about 30% to 40% of the total elastomeric part in a car tyre and 60% to 80% of a truck tyre.</td>
</tr>
<tr>
<td>Synthetic Rubber</td>
<td>All synthetic rubbers are made from petrochemicals.</td>
<td>Synthetic rubber accounts for about 60% to 70% of the total elastomeric part in a car tyre and about 20% to 40% of a truck tyre.</td>
</tr>
<tr>
<td>Steel cord and bead wire including the coating materials and activators, brass /tin/zinc.</td>
<td>The steel is premium grade and is only manufactured in a few plants around the world due to its high quality requirements.</td>
<td>Steel is used to provide rigidity and strength to the tyres.</td>
</tr>
<tr>
<td>Reinforcing fabrics</td>
<td>Polyester, rayon, or nylon</td>
<td>Used for structural strength and for the carcasses of car tyres.</td>
</tr>
<tr>
<td>Carbon black, amorphous silica</td>
<td>Carbon black is derived from oil stock. Amorphous silica is obtained from silicium mineral and sodium carbonate. It may have natural or synthetic origin.</td>
<td>Carbon black and silica provide durability and resistance against wear and tear.</td>
</tr>
<tr>
<td>Zinc oxide</td>
<td>Zinc is a mined mineral but may also be sourced from recycled zinc, which then undergoes a production process to produce zinc oxide.</td>
<td>Zinc oxide is added essentially as vulcanization activator. After vulcanization, it is present as bound zinc in tyres.</td>
</tr>
<tr>
<td>Sulphur (including compounds)</td>
<td>A mined mineral or extracted from gas or oil.</td>
<td>Main actor for vulcanization.</td>
</tr>
<tr>
<td>Other additives and solvents age resistors, processing aids, accelerators, vulcanizing agents, softeners, and fillers</td>
<td>Synthetic or natural source.</td>
<td>The other additives are used in the various rubber compounds to modify handling, manufacturing, and end-product properties.</td>
</tr>
<tr>
<td>Recycled rubber</td>
<td>Recovered from used tyres or other rubber products.</td>
<td>Used in some rubber compounds in the manufacture of ‘new’ rubber products and retread materials.</td>
</tr>
</tbody>
</table>

Table 2: Materials used in the manufacture of tyres.
4. Environmental Issues Associated with Used Tyres

4.1. Public Health Risk

When managed improperly, tyres can become home to rodents and breeding grounds for mosquitoes that transmit diseases such as yellow fever and dengue. Because of its shape and impermeable nature, tyres can hold water and debris making it ideal for these vectors.

4.2. Environmental Risk

Tyres, when managed or disposed of inappropriately, can block water channels, creeks, and storm water channels resulting in changes to flow patterns which can in turn lead to erosion, silting, and contribute to increased flooding.

Burning of tyres can generate smoke and oil and leach toxic contaminants that affect the soil, waterways, and the air.

If disposed in municipal landfills, tyres can occupy valuable space.

4.2.1. Ecotoxicity and Leaching

The evaluation of the toxicity of tyres can be difficult because of the broad range of substances found in tyres. Over the years, several studies have yielded results from both ends of the spectrum. Since many parameters can affect the results achieved for each test conducted, the toxicity of tyres is inconclusive.

Leachate from tyres may contaminate the soil, surface water, and groundwater sources at the site and surrounding areas where they are stored.

Studies examining the concentration of the leachate and its effects on the environment have had varied results. One study, in the Netherlands for instance, has indicated that leaching of heavy metals and organic chemicals from recycled car tyres used as infill in artificial turf system were within national levels except for zinc.
Environmental Guidelines for the Management of Used Tyres

Studies have indicated that even with high presence, zinc concentrations decrease over time. Studies have concluded that the impacts of used tyres on the sub-soil of road or surface water under natural environmental conditions were insignificant with regard to ground water and surface water quality.

{Tyres do not spontaneously Combust... Burning tyres are hazards to human health and the environment by releasing pollutants such as dust, smoke & fumes.}

4.2.2. Uncontrolled Open Air Burning

If a tyre fire occurs, the composition of the pile will affect the fire’s rate. Fires occurring in piles of complete (whole) tyres tend to burn down the middle while fires occurring in chipped or shredded piles tend to spread over the pile’s surface.

Products generated from combustion of tyres are:
- Ash (Carbon, Zinc Oxide, Cadmium, Lead and other heavy metals);
- Sulphur compounds; and
- Aromatic oils.

Factors that influences the products generated from combustion are:
- Type of tyres;
- Burn rate;
- Size of the tyre pile;
- Temperature of the environment; and
- Humidity.
When combustion is incomplete, it can result in the production of Persistent Organic Pollutants (POPs). POPs are chemical substances that persist in the environment, bioaccumulate through the food web and increase the risk of adverse effects to human health and the environment.

Uncontrolled tyre fires have major environmental impacts on air, water, and soil.

Air Pollution: tyre fires in the open release into the environment black smoke, carbon dioxide, and hazardous pollutants (dioxins, cadmium, nickel, zinc, mercury). Leachate of such pollutants combined with rainfall may lead to soil and water contamination.

Water Pollution: when burnt in large amounts, tyres can produce oil that is highly polluting and flammable. The oil may runoff into nearby waterways or percolates through the soil reaching ground water.

Soil Pollution: Residues left after a fire can cause immediate pollution as a result of liquid (oils) penetrating the soil. Residues may also persist in soil long after the fire has ended resulting in seepage of ash and other unburned residues.

5. **The Basel Convention and Used Tyres**

The Basel Convention on the Transboundary Movement of Hazardous Wastes and Other Wastes, which Guyana acceded April 04, 2001, stipulates that transboundary movement of wastes (export, import, or in transit) are permitted only when the movement itself and the disposal of the hazardous or other wastes involved are environmentally sound.

Article 1 ("Scope of the Convention") defines the types of wastes subject to the Convention. Subparagraph (a) of that article sets forth a two-step process for determining whether a waste is a hazardous waste subject to the Convention: first, the waste must belong to one of the categories of Annex I to the Convention ("Categories of wastes to be controlled"), and second, the waste must possess at least one of the characteristics listed in Annex III to the Convention ("List of hazardous characteristics").

Although tyres cannot be identified under any category of waste streams in the first part of Annex I (i.e. Y1-Y8), they contain elements or compounds listed in the Annex. These compounds are encased in the rubber.

Once a developer wishes to export tyres for recovery or final disposal, he/she must complete the Basel Convention Notification Form, which is an obligation under the Basel Convention (See Section 6 for more information).

6. **Mitigation Measures**

6.1. **Environmentally-Sound Management**
Environmental Guidelines for the Management of Used Tyres

Waste generation is unavoidable, as such it is necessary to implement sound management systems that can minimize the amount of waste generated. An effective Environmental Management System (EMS) should comprise a set of processes and practices that reduce environmental impacts and increase its efficiency.

The guiding principle broadly accepted for securing sustainable waste management is the waste hierarchy of management practices. Priority is given to wastes prevention and reuse followed by recycling over disposal.

Figure 2: Waste Management Hierarchy.

Waste Prevention and Minimization

Waste minimization can be achieved through increasing the useful life of the tyres. It is essential that the procedures for calibration and maintenance recommended by tyre manufactures are followed, such as:

- Keeping tyres properly inflated;
- Inspecting tyres monthly for uneven wear, which can indicate improper tyre inflation, improper balance, poor suspension, or misalignment; and
- Driving responsibly, including avoiding potholes.

Storage of Tyres

Collection for storage requires logistics and planning taking into account all points of tyre generation.
Environmental Guidelines for the Management of Used Tyres

Storage of tyres without endangering human health and the environment requires the storage facility and/or area to meet specific requirements such as preventing major risk (such as fires), minimizing leachate production and contamination, and avoiding and controlling the breeding of mosquitoes and other disease borne vectors. Figure 3, shows the two most common ways that can be utilised to store tyres and prevent the accumulation of water.

Tyres should be stored at a level above and away from surface water or ground water recharge sites.

The site should be securely fenced and have gates wide enough to allow the entry of emergency vehicles (e.g. Fire engines).

Figure 3: Most common ways to store tyres.

No hazardous wastes, flammable, or combustible liquids should be stored close to tyre stockpiles.

Most studies regarding the storage time for tyres are inconclusive. However, it is recommended that tyres storage be undertaken only when necessary and for the shortest possible time.

6.2. Reuse

Depending on the condition of the tyre, it can be resold and used for a few more years. Sources of used tyres can be:

I. From second hand vehicles or from vehicles that are scrapped.

II. Old (obsolete) tyres that were used for less demanding applications.

When purchasing used tyres:

- Ensure tyres do not have any cut exceeding 25 mm or 10% of the section width.
- Must not have any external lumps, bulge, or tear caused by separation or failure of its structure.
- When inflated to the maximum pressure at which it is designed to operate, the tyre must not show any of the defects mentioned.
- The base of any groove shown in the original tread pattern must be clearly visible.
- The grooves of the original must be at least 2 mm deep across the full breadth and around the entire outer circumference of the
III. Tyres that are exchanged for reasons other than that having reached the end of their life.

Retreading is another option of reuse. It involves replacing the wear surface of the tyre thus increasing the useful life of the tyre.

Apart from direct reuse or applying industrial applications to increase the useful life of tyres, used tyres can be reused in homes. For example, tyres can be used in gardening; old tyres can be used for planting herbs, tomatoes, and peppers. Tyres can also be used to create swings for children.

6.3. Disposal

Currently, there are not many options for environmentally-sound disposal of tyres in Guyana. Tyres can be disposed at:

Haags Bosch Sanitary Landfill Site
Eccles, East Bank Demerara
Tel: 592-233-2020

Although none of these methods are being employed in Guyana at this time, Table1 below shows several options that may be considered as environmentally-sound disposal methods for tyres.

<table>
<thead>
<tr>
<th>Means of disposal</th>
<th>Application/Product</th>
<th>Benefits</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retreading</td>
<td>Retreaded tyre</td>
<td>As retreading extends the life of a tyre and uses many of the original materials and much of the original</td>
<td>Primary areas of concern are volatile organic compounds from solvents, bonding agents, and</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Means of disposal</th>
<th>Application/Product</th>
<th>Benefits</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>structure, the net result is a decrease in materials and energy used in comparison to the manufacture of new tyres. The energy used to retread a tyre is approximately 400 MJ, compared to 970 MJ for manufacturing a new tyre.</td>
<td>rubber compounds during vulcanization. Odour may also be an issue in some areas. The process generates significant wastes. The rubber removed from used tyres before retreading is generally sold as rubber crumbs for other purposes.</td>
</tr>
</tbody>
</table>
| | Artificial turf | - Skid resistant;
- High impact resistance;
- Durable;
- Highly resilient;
- Easy maintenance; and
- Independent of irrigation. | Risk of increased leaching of zinc. |
| | Playgrounds and sports grounds | - Smooth with consistent thickness;
- High impact resistance;
- Durable;
- Will not crack easily; and
- Available in various colours. | Risk of increased leaching of zinc. |
| Industrial & Consumer Products | Applications in rubber modified concrete | - Lower modulus of elasticity, which reduces brittle failure;
- Increased energy absorption, making them suitable for use in crash barriers, etc.;
- Suitable for low weight-bearing structures; and
- Can be reprocessed by grinding and mixing again with cement. | Relatively new product, producers will have to persuade the construction industry of its suitability. |
| | Road applications | - Increased durability;
- Surface resilience;
- Reduced maintenance;
- Increased resistance to deformation and cracking;
- More resistant to cracking at lower temperatures;
- Very sensitive to changes in conditions during mixing, i.e., requires expert knowledge;
- Difficult to apply in wet weather;
- Not applicable when ambient or surface temperatures are lower than 13°C;
- Possible occupational health problems due to emissions; and |
<table>
<thead>
<tr>
<th>Means of disposal</th>
<th>Application/Product</th>
<th>Benefits</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Train and tram rail beds. | | - Longer lifespan compared with timber (20 years for rubber beds and 3 – 4 for wood or asphalt);
- Environmentally safe;
- More flush with road; and
- Uses chips/shreds as vibration-damping layer beneath sub ballast. | | - More expensive than traditional material; and
- Relatively new product, producers will have to persuade the industry of its suitability. |
| Indoor safety flooring | | - Skid resistant;
- High impact resistance;
- Durable;
- Available in various colours; and
- Easy maintenance. | | - Colours may be limited. More expensive than conventional alternatives. |
| Shipping container liners | Possible use with other packaging material. | | More expensive than conventional alternatives. |
| Conveyor belts | Possible use as conveyor belt at supermarket checkouts. | | - More expensive than conventional alternatives; and
- Cannot be used where the belt is subject to major stresses, since it may be prone to failure. |
| Footwear | | - Water resistant;
- Long life span; and
- By varying the thickness of the sole the use of the footwear can be changed. | Could be more expensive to manufacture than a conventional product. |
| Carpet underlay | | - Easy to use; | Limited industrial production. |
Means of disposal

<table>
<thead>
<tr>
<th>Application/Product</th>
<th>Benefits</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recyclable; Conserves natural resources.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof tiles</td>
<td>Looks like traditional tile; Durable (40 to 50 years warranty US and Canadian tiles); Lighter; and Cheaper long-term cost.</td>
<td>Limited industrial production.</td>
</tr>
<tr>
<td>Floor tiles</td>
<td>Resilient; Skid resistant; High impact; Easy maintenance; and Recyclable.</td>
<td>Limited industrial production.</td>
</tr>
<tr>
<td>Activated carbon (carbon black)</td>
<td>Preserves virgin material.</td>
<td>Very expensive process as it needs pyrolysis; Very energy intensive; Low-grade activated carbon; and Still at the research stage.</td>
</tr>
<tr>
<td>Livestock mattresses</td>
<td>Long life span; Easy to disinfect; Reusable; and In the long term, it is cheaper than alternatives.</td>
<td>Could be more expensive to manufacture than conventional mattresses; and Market potential unknown.</td>
</tr>
<tr>
<td>Thermoplastic Elastomers (TPE)</td>
<td>Similar properties to typical elastomeric materials.</td>
<td>Very limited existing sites.</td>
</tr>
</tbody>
</table>

Civil engineering

<table>
<thead>
<tr>
<th>Application/Product</th>
<th>Benefits</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landfill engineering</td>
<td>Lightweight, low-density fill material; Good load-bearing capacity; Lower cost compared to gravel; and Does not call for highly qualified labour.</td>
<td>Potential leaching of metals and hydrocarbons; The steel cord in the tyre could puncture the lining; Compressibility of the tyre; and Increased risk of fires.</td>
</tr>
</tbody>
</table>
Means of disposal

<table>
<thead>
<tr>
<th>Application/Product</th>
<th>Benefits</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Lightweight fill and soil enforcement | • Reduced unit weight compared with other alternatives;
• Flexible, with good load bearing capacity; and
• Good drainage. | • Potential leaching of metals and hydrocarbons;
• Deformation under vertical load, when proper soil cover thickness is not maintained; and
• Compaction difficult (need to use more than 10-ton roller, six passes, 300mm lift). |
| Erosion control | • Low density, which allows free-floating structures to act as wave barriers;
• Bales are lightweight and easy to handle; and
• Durability. | • Tyres should be securely anchored to prevent mobility under flood conditions;
• Tyres can trap debris, (need maintenance);
• Anchors can shift over time due to wave action, rendering tyre structures insecure;
• Water action and tyre buoyancy makes the positioning of any permanent protection below the surface very difficult; and
• Ultimately, the tyres themselves become waste. |
| Noise barriers | • Lightweight, and can therefore be used in geologically-weak areas where traditional materials would prove too heavy; and
• Free draining and durable. | • Needs monitoring to avoid accumulation of debris; and
• Visual impact. |
| Thermal insulation | • Low thermal conductivity; and
• Lower overall cost than traditional materials. | • Compressible; and
• Relatively new product, producers will need to persuade the construction industry of its suitability. |
| Pyrolysis | **Pyrolysis**
Reutilizes the by-products of pyrolysis (oil and gas). | • Limited capacity because of operational problems caused by tyres;
• Very limited existing sites; and
• Sludge originating from the process contains metals and other wastes, which, for the moment, are deposited in |
Means of disposal

<table>
<thead>
<tr>
<th>Co-processing</th>
<th>Application/Product</th>
<th>Benefits</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternative fuel and/or raw material (e.g. cement kilns or steel production)</td>
<td>· High calorific value;</td>
<td>· Special monitoring equipment required to control emissions;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· Large volume potential;</td>
<td>· Needs a system for supplying the separated waste/tyre fractions;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· Recovery of energy and steel.</td>
<td>· Increased zinc loading filter dust and/or clinker.</td>
</tr>
<tr>
<td>Co-incineration in plants for</td>
<td>Alternative fuel for power plants</td>
<td>· Recovery of energy;</td>
<td></td>
</tr>
<tr>
<td>electric power generation</td>
<td></td>
<td>· Possibility of recovering metals from the ash.</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Environmentally-Sound Disposal methods: Advantages and Disadvantages.

7. **EPA Authorisation Process**
As mentioned previously in these Guidelines, because of its constituents, tyres can be considered hazardous. In that regard, once an individual wishes to export used/old tyres for recovery or final disposal, they must complete the Basel Convention Notification Form for Transboundary Movement of Hazardous Wastes.

The Environmental Protection Agency (EPA) being the Competent Authority and Focal Point of the Basel Convention in Guyana has the authority to process the application for and grant approval for the export of hazardous waste.

The EPA is the only Agency in Guyana with the authority to grant Authorisation for the export of hazardous wastes.

Documents required for the export of hazardous wastes are:

- Application Form for Environmental Authorisation;
- EPA’s Letter of Authorisation;
- Transboundary Movement of Hazardous Waste Notification Form;
- Guyana Revenue Authority (GRA) Movement Document; and
- Letter of Consent from Country of Import.

EPA’S PROCEDURES FOR EXPORT OF HAZARDOUS WASTES

1a. The Notifier/Exporter should apply to the EPA at least **three (3) months** prior to first shipment of hazardous waste.

1b. An Application Form for Environmental Authorisation can be obtained from the EPA Office or can be downloaded from the EPA website (www.epaguyana.org). A non-refundable fee of US $50.00 or the Guyana equivalent according to Scotia Bank daily rates is required for the processing of the Application. The processing of this Application should take no more than six weeks.

1c. After the Application has been reviewed and processed by the Agency and found to be in compliance, the Notifier/Exporter is issued with a Letter of Environmental Authorisation.

1d. Environmental Authorisation: The Letter of Environmental Authorisation is valid for one (1) year, after which it is subject to renewal.

2. Whilst the Application is being processed, the Notifier/Exporter collects a Notification Document for...
8. Reference

- Basel Convention Technical Guidelines: Revised Technical Guidelines for the Environmentally Sound Management of Used and Waste Pneumatic Tyres,
Environmental Guidelines for the Management of Used Tyres

